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Leveraging a scientific infrastructure for exploring how students learn, we have devel-
oped cognitive and statistical models of skill acquisition and used them to understand 
fundamental similarities and differences across learners. Our primary question was 
why do some students learn faster than others? Or, do they? We model data from 
student performance on groups of tasks that assess the same skill component and that 
provide follow-up instruction on student errors. Our models estimate, for both stu-
dents and skills, initial correctness and learning rate, that is, the increase in correctness 
after each practice opportunity. We applied our models to 1.3 million observations 
across 27 datasets of student interactions with online practice systems in the context 
of elementary to college courses in math, science, and language. Despite the availa-
bility of up-front verbal instruction, like lectures and readings, students demonstrate 
modest initial prepractice performance, at about 65% accuracy. Despite being in the 
same course, students’ initial performance varies substantially from about 55% correct 
for those in the lower half to 75% for those in the upper half. In contrast, and much 
to our surprise, we found students to be astonishingly similar in estimated learning 
rate, typically increasing by about 0.1 log odds or 2.5% in accuracy per opportunity. 
These findings pose a challenge for theories of learning to explain the odd combination 
of large variation in student initial performance and striking regularity in student 
learning rate.

learning rate | learning curves | deliberate practice | logistic regression growth modeling; 
educational equity

Humans are capable of a wide and flexible variety of learning adaptation. This adaptability 
is particularly apparent in the development of expertise associated with high-profile careers, 
like technology innovation or music composition, but also in the wide variety of academic 
subject matter, reading, writing, math, science, second language, etc., humans master. Better 
understanding of how human learning works in the context of academic courses is of scientific 
interest because academic learning is particularly distinct to the human species. It is also of 
practical interest because such understanding can be used to develop more effective education. 
New technologies have often made better science possible. Such is the case for educational 
technologies which, in this century, have been increasingly providing unprecedented volumes 
of detailed data on academic learning. With center-level funding from the National Science 
Foundation to LearnLab (learnlab.org), we developed a social–technical infrastructure to 
systematically acquire such data and use it both to optimize interactive learning technologies 
and to pursue scientific questions about student learning.

LearnLab’s early goals were to identify the mental units of learning in academic courses, 
to use these insights to design and demonstrate improved instruction in randomized 
controlled experiments embedded in courses, and to build models of learners that may 
reveal significant similarities and differences across learners. Past research produced meth-
ods for discovering and validating improved cognitive models of the mental units students 
acquire in academic courses (e.g., ref. 1). These improved cognitive models were used to 
redesign course units, and random assignment field experiments comparing student use 
of the redesign (treatment) with the original design (control) demonstrated enhanced 
learning outcomes (e.g., refs. 2 and 3). A key theoretical hypothesis of these cognitive 
models is that a decomposition of learning into discrete units, or knowledge components, 
produces predictions that can be tested against student performance data across different 
contexts and at different times. Investigations across multiple datasets support this knowl-
edge component hypothesis (e.g., refs. 1 and 4).

In this paper, we combine these cognitive models with statistical growth models to explore 
significant similarities and differences across academic learners. Our research questions are:

1. � Practice needed: How many practice opportunities do students need to reach a mastery 
level of 80% correctness?

2. � Initial performance variation: How much do students vary in their initial performance?
3. � Learning-rate variation: How much do students vary in their learning rate?

Significance

Prior research, often using 
self-report data, hypothesizes 
that the path to expertise 
requires extensive practice and 
that different learners acquire 
competence at different rates. 
Fitting cognitive and statistical 
growth models to 27 datasets 
involving observations of learning 
and performance in academic 
settings, we find evidence for the 
first hypothesis and against the 
second. Students do need 
extensive practice, about seven 
opportunities per component of 
knowledge. Students do not 
show substantial differences in 
their rate of learning. These 
results provide a challenge for 
learning theory to explain this 
striking similarity in student 
learning rate. They also suggest 
that educational achievement 
gaps come from differences in 
learning opportunities and that 
better access to such 
opportunities can help close 
those gaps.
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Research question 1 probes how much practice, if any, students 
need beyond the up-front verbal instruction they typically receive 
(e.g., from course lectures and/or reading assignments) before prac-
tice begins. We find that students are not at mastery at the start of 
practice, and substantial learning occurs from the practice itself as 
students receive feedback on their performance and make use of 
context-sensitive verbal instruction and examples. We find that a 
typical student needs about seven learning opportunities to master 
a typical knowledge component. However, we find substantial var-
iation in needed opportunities across students. Thus, questions 2 
and 3 probe whether that variation is more due to differences in 
initial performance and/or differences in the rate at which perfor-
mance improves with each successive learning opportunity.

A rigorous and broad estimation of variation in student learning 
rate informs important scientific debates. Research on expertise (5) 
indicates that even historic geniuses needed years of practice to 
develop their expertise. Ericsson (6) estimates that high-level exper-
tise takes about 10,000 h of practice to develop and claims that no 
substantial exceptions have been found. In other words, no matter 
who you are, you need many repeated practice opportunities to 
develop expertise. As a counterpoint, other researchers (e.g., refs. 7 
and 8) have suggested that practice time alone is not enough to 
account for how much expertise is acquired and that some people 
may learn more (or less) than others given the same practice time. 
This debate comes down to whether learning rate per practice oppor-
tunity is relatively constant across individuals or whether it varies 
substantially. It has been difficult to make progress in resolving or 
refining this debate because of limitations in available data. Existing 
data fueling this debate come from a small number of participants, 
are prone to subjective error as they are largely self-reported, and are 
sparse and coarse grained (few data points per participant). In con-
trast, the datasets we have accumulated directly track practice and 
are thus objective and are fine grained (about 200 observations per 
student), lasting over hours or weeks, and are large in students (nearly 
7,000 students).

Beyond the deliberate practice debate, we find some researchers 
indicating substantial differences in student learning rate (9, 10) and 
others indicating little difference in student learning rate (11). 
Consider, for instance, a National Academy of Sciences report indi-
cating that “high-ability learners learn at a more rapid rate than other 
students” (9, p. 131). In contrast to the National Academy of 
Sciences report, Bloom (11) suggested that “most students become 
very similar with regard to … rate of learning … when provided 
with favorable learning conditions.” (p. x). While Bloom and col-
leagues did demonstrate the effectiveness of a form of deliberate 
practice, they did not provide evidence to demonstrate their claim 
of uniformity in learning rate. Nor does the National Academy of 
Sciences report point to evidence for learning-rate variability. This 
project provides an opportunity to test these competing claims.

Importantly, the claim in the National Academy of Sciences 
report is about high-ability learners, suggesting differences due to 
learner characteristics. It can be contrasted with a claim, which is 
almost certainly true, that learners in more favorable conditions 
learn at a more rapid rate than those in less favorable conditions. 
The educational technologies used in our NSF-funded LearnLab 
studies arguably provide favorable learning conditions as they 
implement research-based principles (e.g., varied practice with 
feedback and explanatory instruction), and many have been 
improved through iterative data-driven cognitive task analysis and 
experimental methods (12). A key goal of LearnLab was to iden-
tify, in the words of the National Academy of Sciences report, 
high-ability learners who “learn at a more rapid rate than other 
students” (13, p. 37). We were interested in identifying differences 
in students’ self-regulated learning skills or background knowledge 

that would yield learning-rate differences and that might be 
addressed through instructional support for learning to learn. 
Thus, we were quite surprised as results began to emerge suggesting 
an astonishing amount of regularity in student learning rate (14).

One may be tempted by everyday experience to suggest there 
is obvious wide variability in how fast different people learn. At 
the end of an algebra course, for example, some students are get-
ting an A and appear to have learned faster than other students 
who are getting low grades. However, such differences may be 
alternatively explained not as differences in learning rate but as 
differences in the number of quality learning opportunities indi-
viduals experience. In the varied data sources we have accumu-
lated, the number of learning opportunities students experience 
is known, and thus we can gain insight into whether student 
competence differences derive more from environmental oppor-
tunity differences or student-inherent learning-rate differences.

In particular, we model learning using 27 datasets with over 1.3 
million student performance observations from 6,946 learners in 12 
different courses ranging across math, science, and language learning, 
across educational levels from late elementary to college, and across 
educational technologies including intelligent tutoring systems, edu-
cational games, and online courses (SI Appendix, Table S1).

Should student performance captured in these datasets be con-
sidered representative of human learning generally? These datasets 
were produced by students using educational technology in nat-
ural contexts of academic courses. These courses involved common 
forms of instruction, such as lectures and assigned readings, which 
typically preceded student practice within the educational tech-
nology. While student practice has historically been done mostly 
on paper, we suspect, as in modern psychological experiments 
where participants interact with technology, that the technology 
interaction itself is not substantially changing the psychological 
processes involved. Thus, these datasets are arguably well repre-
sentative of complex human learning as it is displayed in academic 
contexts in math, science, and language learning.

Should these educational technology contexts be considered 
“favorable learning conditions” per Bloom’s claim? These contexts 
are prime examples of a learning-by-doing approach that has been 
repeatedly advocated in different variations and with substantial 
experimental support, including “mastery-based learning” (15), 
“active learning” (16), “testing effect” (17), “formative assessment” 
(18), and “deliberate practice” (5, 19, 20). These contexts provide 
favorable learning conditions not only because of the active learn-
ing support, but also because of more particular features of learn-
ing interactions each with its own scientific basis. All these 
educational technologies a) provide immediate feedback on errors 
in problem solving or performance contexts (21, 22), b) provide 
explanatory context-specific instruction on demand (e.g., ref. 23), 
including an example correct response if needed (24–26), c) highly 
encourage or enforce students to enter or observe a correct response 
before moving on, d) provide tailored tasks designed through data-
based cognitive task analysis to practice specific cognitive compe-
tences aligned with course goals for improving student thinking 
(e.g., refs. 27 and 28), and e) give repeated opportunities to ensure 
student mastery of these cognitive competences (e.g., ref. 29) in 
varied tasks that require appropriate generalized, but not overgen-
eralized, knowledge and skill acquisition (e.g., ref. 30).

Modeling Learning by Integrating a Cognitive 
Model into a Logistic Regression Growth Model

To model student performance and learning, we used mixed effects 
logistic regression with a cognitive model component and a growth 
component. As indicated in the first line in Fig. 1, we model the D
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success of student i on task j as proportional to a linear function with 
an intercept that represents initial-knowledge (shown in orange) and 
a slope that represents learning-rate (shown in green) per opportunity 
to learn. Both initial-knowledge and learning-rate are further broken 
down (second line in Fig. 1) to provide an overall estimate and var-
iations due to student and knowledge component (KC). These fac-
tors lead to six parameters (predictor variables) in a mixed effects 
logistic regression (right side of equation in Fig. 1) where the out-
come variable (pij) is the probability that student i gets task j correct 
(left side but shown transformed by the log odds as per logistic 
regression). The six predictor variables include two fixed effects for 
overall initial-knowledge (θ) and overall learning rate (δ) and four 
random effects for the student initial-knowledge (θi), student 
learning-rate (δi), KC initial-knowledge (βk), and KC learning-rate 
(γk) (see SI Appendix for the precise model description in R). The 
three learning-rate parameters (in green) are multiplied by the num-
ber of opportunities (Tik) student i has experienced on knowledge 
component k.

The product of learning rates by opportunity is the growth com-
ponent of this model. Another key component is the cognitive 
model, which is represented by matrix qjk. This matrix indicates for 
each task j what knowledge component is needed to perform that 
task*. In general, a cognitive model is an explanation of one or more 
cognitive processes that generates predictions that can be matched 
to human data (31). These cognitive models are implemented as 
computational models in datasets coming from Intelligent Tutoring 
Systems (see “ITS” in the Ed Tech column of SI Appendix, Table S1). 
The qjk matrix provides a simplified representation of a cognitive 
model useful for statistical analysis. Many prior investigations have 
evaluated and refined these cognitive or knowledge component (KC) 
models by comparing alternative versions of the qjk matrix (27, 28, 
32–35). This KC model refinement process is illustrated in Table 1 
with four different qjk matrices for the same six tasks. As noted above, 
a task observation is often a step in a problem solution such that, for 
example, the problem 2 * 8 − 30 is observed in two steps as shown 
in the first two rows of Table 1.

Each alternative qjk introduces different hypotheses about what 
makes tasks difficult (see the βk term in Fig. 1) and what yields trans-
fer of learning across practice opportunities on related tasks (the term 
γk). Q0 reflects the hypothesis that all arithmetic tasks require one 
knowledge component (KC) and predicts all tasks will be of similar 
difficulty and practice on any one improves performance on another. 
Q1 separates multiplication and subtraction as different KCs. One 
may further hypothesize, as in Q2, that learning to solve tasks like 
the third (30 − 2 * 8 → 30 − 16) and the fifth requires extra order 

of operations knowledge (MultOR), whereas the first task (2 * 8 − 30 
→ 16 − 30) can be solved by a naive left-to-right strategy (MultLR). 
Q3 represents hypotheses that each task has its own inherent diffi-
culty and that there is no transfer of learning across tasks. When qik 
is the identity matrix, as in Q3, the initial knowledge terms in Fig. 1 
are equivalent to item response theory (36). Our model is similar to 
others who have used generalizations of item response theory to 
model student response data (e.g., refs. 37 and 38).

A KC model can be selected by comparing which qjk matrix 
provides the best prediction fit to the student data. Care must be 
taken to use fitness measures that prevent overfitting due to 
increasing complexity (Q0-Q4) either by penalizing for greater 
parameters (e.g., using the Akaike Information Criterion, AIC, 
or the Bayesian Information Criterion, BIC) or testing on held-out 
data via cross validation. DataShop facilitates such comparisons 
using a simpler version of the model in Fig. 1 where the student 
learning-rate term (δi) is not included. We selected the best KC 
model for each dataset as discussed in Materials and Methods.

Results

Illustrating and Evaluating a Learning Growth Model. Fig.  2A 
shows a learning curve (in gold) from one of our datasets (ds394 in 
SI Appendix, Table S1) where overall average probability correct (pij), 
on the y axis, is increasing with successive opportunities (Tik), on the 
x axis. The model predictions are shown in green. Individual student 
curves derived from the model are shown in Fig. 2B. It is difficult to 
visually compare student learning rates (e.g., is student S1 faster than 
S2?) in this nonlinear scale where the opportunity-to-opportunity 
increase (e.g., 2.9% from opportunity 1 to 2 for S3) gets smaller at 
higher opportunities (2.0% from 6 to 7). Rescaling success using log 
odds, as shown in Fig. 2C, produces a linear relationship whereby 
nuanced differences in student learning rate are apparent (e.g., S2 is 
steeper than S1 and S3). Fig. 2D shows initial knowledge estimates 
(the intercepts in yellow) and learning-rate estimates (the slopes in 
blue) for all three students, both in log odds.

We performed comparisons to evaluate the explanatory value 
of including student learning rate and measuring learning rate in 
terms of discrete opportunities rather than time. Much of the prior 
research in refining KC-based cognitive models (1, 39) has used 
a simpler version of the model in Fig. 1 where the student learning-
rate term (δi) is not included. This simpler model has come to be 
called the Additive Factors Model (AFM)†. The model in Fig. 1 
that includes individual student learning-rate parameters (δi) is 
called individual AFM or iAFM (14). If iAFM provides a good 

Fig. 1. We model success (pij) of student i on task j across deliberate practice opportunities (Tik) in a logistic regression with initial-knowledge and learning-rate 
estimates. These estimates are each decomposed into overall, student (i), and knowledge component (k) elements. The knowledge components required by 
each task (j) are specified in a cognitive model matrix (qjk).

*The general statistical model allows for a task to be labeled by multiple KCs but such 
models tend not to produce better predictions than single KC models, and the single KC 
models offer greater simplicity of interpretation.

†The factors are “additive” because of the summation of log-odds values associated with 
KCs or “factors” in task difficulty and transfer. This addition of log-odds is in contrast with 
the multiplication of probabilities associated with KC factors in a more complicated 
Conjunctive Factors Model (39).D
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model for detecting student learning-rate variation, we should see 
that it outperforms AFM, at least on a substantial number of 
datasets. To be sure, such better performance of iAFM is neutral 
regarding the size of the student learning-rate variation—a topic 
we explicitly address further below.

AFM was the best fitting model in six out of 27 datasets based 
on the Akaike Information Criterion (AIC) and 12 out of 27 
datasets based on the Bayesian Information Criterion (BIC), 
whereas iAFM was the best fitting model in 21 out of 27 datasets 
(AIC based) or 15 out of 27 datasets (BIC based). We used 
Wagenmakers (40) approximation to derive Bayes factors from 
BIC. Across the 27 datasets, 15 had strong or greater evidence in 
favor of iAFM being the generating model (Bayes Factor > 1), 
whereas 11 had strong or greater evidence in favor of AFM being 
the generating model (Bayes Factor < −1). These results indicate 
that student learning-rate variation is present and detectable in 
some datasets. In other datasets, it is either not present or too 
small to be detectable. As we elaborate later, even when student 
learning-rate variation is detectable, it is not particularly large.

To evaluate the hypothesis that students learn as a result of KC-
specific practice opportunities within the educational technologies, 
we contrast an additional model. The time-based Additive Factors 
Model (Time-AFM) implements the alternative hypothesis that 
students learn from general accumulated experiences in and outside 
the technology using the elapsed calendar time to predict each per-
formance observation. In this model, we replaced the count of prac-
tice opportunities used in iAFM and AFM (Tik) with a calendar time 
variable. That is, to predict performance (pij) of student i on task j, 
we use the calendar time Cik that has passed since this student first 
experienced knowledge component k associated with this task j. In 
Time-AFM, Cik takes the place of Tik in AFM. The results indicate 
that, despite its considerable overlap with AFM and iAFM, Time-
Based AFM was only the best fitting model in one out of the 20 
datasets (seven datasets did not have appropriate time-logging to run 
this comparison). Thus, we have clear evidence that learning growth 
is better characterized by KC-specific practice opportunities within 
the technology than by a calendar time variable that also reflects 
general opportunities for growth and for out-of-technology 
learning.

Students Start at About 65% Correctness and Need about 
7 Practice Repetitions. Using the iAFM modeling results, we 
investigated students’ typical initial performance. This investigation 
has relevance to the question of whether initial verbal instruction, 
most typically in the form of readings and lectures, is sufficient for 
reaching a reasonable level of mastery (defined as 80% correctness) 
(15). One possibility is that verbal instruction is enough for the 
average student to reach mastery and deliberate practice will just 

serve to strengthen what is learned, making performance faster 
and more fluent. Conversely, it is possible that verbal instruction 
is not sufficient to reach reasonable accuracy and deliberate 
practice is needed. As a measure of initial performance, we used 
the population iAFM intercept for each dataset (see θ in Fig. 1). 
SI  Appendix, Table  S1 shows the population intercept (initial 
knowledge estimate) for each dataset. The median population 
intercept (θ) across the 27 datasets is 0.638 log odds (M = 0.501, 
95% CI = [0.285,0.718]), which converts to 65.42% correct (M 
= 61.79%, 95% CI = [56.77%, 66.82%]). That is, the typical 
student is starting practice well below mastery despite having 
been provided with verbal instruction in the form of readings 
and lectures prior to the deliberate practice experiences in our data.

Having established that with verbal instruction alone, students 
did not reach mastery, we investigated how much deliberate practice 
students tend to need. The median overall learning rate (δ) across 
datasets is 0.09 log odds (M = 0.15, 95% CI = [0.08, 0.22]) per 
opportunity, which converts to a 2.5 percentage point increase for 
one practice opportunity from the median intercept (θ) of 65%. We 
used the overall parameter estimates (θ and δ) from each dataset 
[with this formula (log-odds (0.80) − log-odds(θ))/δ] to determine 
how many opportunities a typical student from that dataset would 
need to reach mastery. Across all datasets, the median number of 
opportunities to reach mastery is 7.24 (M = 12.27, 95% CI = [7.09, 
17.45]). In other words, a typical student learning a typical KC tends 
to require seven additional practice opportunities to reach mastery 
after noninteractive verbal instruction (i.e., text or lecture).

Students Vary Substantially in Initial Knowledge. We investigated 
how much students vary in their initial knowledge using the model 
fits from iAFM. For each dataset, we computed the SD of student 
intercepts (θ + θi) and found the median standard across datasets 
to be 0.651 (M = 0.724, SD = 0.283) and the median interquartile 
range is 0.830 (M = 0.988, SD = 0.430) in log odds‡. This large 
variation is more apparent if we compare the median student 
intercept of the lower and upper halves of student intercepts. 
When converted to percentages, we see (first column of Table 2) 
that students in the lower half of initial knowledge had a median 
correctness of 55%, and those in the upper half were 75% correct.

To highlight consequences of this substantial variability in ini-
tial knowledge, we compared estimated opportunities needed to 
reach 80% mastery for students in the bottom and top halves of 
initial knowledge (see the second column of Table 2). We used 
the same formula for computing opportunities given above but 

Table 1. Four alternative cognitive models for the same tasks represented as qjk KC models

Tasks j (Observed problem steps)
Q0 Q1 Q2 Q3 = Item model

Arith Mult Sub MultLR MultOR Sub+ Sub− I1 I2 I3 I4 I5 I6

2*8−30→ 16−30 1 1 0 1 0 0 0 1 0 0 0 0 0

16−30→ −14 1 0 1 0 0 0 1 0 1 0 0 0 0

30−2*8→ 30−16 1 1 0 0 1 0 0 0 0 1 0 0 0

30−16→ 14 1 0 1 0 0 1 0 0 0 0 1 0 0

10−3*7→ 10−21 1 1 0 0 1 0 0 0 0 0 0 1 0

10−21→ −11 1 0 1 0 0 0 1 0 0 0 0 0 1

Note: Column groups Q0, Q1, Q2, and Q3 represent different knowledge component (KC) models. Each row represents a task. 1 indicates that, in a given knowledge component model, 
the column KC is required in that task (row). For example, for Q0, all tasks require arithmetic (Arith), whereas for Q2, tasks are hypothesized to require four different KCs depending on 
the operation involved and the context of its use.

‡We report parameter estimate variability using interquartile range (the difference between 
the 75th and 25th percentiles) to reduce dependence on distributional assumptions inher-
ent in other measures of variability.D
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replaced the overall initial knowledge (θ) with the 25th and 75th 
percentiles of the student initial knowledge estimates (θi). Whereas 
a student in the bottom half of initial knowledge needs about 
13.13 opportunities to reach mastery, a student in the top half 
needs about 3.66 opportunities. In other words, a typical low 
initial knowledge student will take more than three times longer 
to reach mastery than a typical high initial knowledge student—a 
large difference for students who have met course prerequisites 
and been provided verbal instruction.

Students are Astonishingly Similar in Learning Rate. Whereas 
initial knowledge varies substantially across students, we found 
learning rate to be astonishingly similar across students. This 
contrast can be seen in model-based student learning curves, like 
the one shown above in Fig. 2C. The top of Fig. 3 shows such 
curves for four datasets representing different course content, 
educational levels, and kinds of educational technology. See 
SI Appendix, Figs. S6–S10 for KC and simulated data learning 
curves of all 27 datasets. Variation in initial knowledge is indicated 
by the wide range of intercepts in these curves. The similarity in 
student learning rate is illustrated by how generally parallel these 
curves are. While there are some cases of variation (e.g., see some 
nonparallel lines in the fourth panel for ds372), the log-odds 
increase in performance per opportunity is strikingly similar for 
most students in most datasets. This similarity in student learning 

rate is not only in contrast to much greater variation in student 
initial knowledge, but also in contrast to greater variation in 
knowledge component (KC) learning rates, shown in the middle 
of Fig.  3. This learning-rate variation by KC helps to alleviate 
a concern that we do not see variation in student learning rate 
because either our data or model are insufficient to detect such 
variation. The fact that we see substantial learning-rate variation 
by KC and the obvious variation in the simulated student curves 
(bottom row of Fig.  3) indicates learning-rate variations are 
detectable in these datasets with our model of learning, which relies 
on an empirically refined cognitive model of domain competence 
inserted into a mixed effects logistic regression growth model.

Low student learning-rate variation is common across all the 
datasets as indicated by the mostly parallel lines in Fig. 4, which 
shows the learning curves for the remaining 23 datasets. These 
curves also illustrate the much larger variation in student initial 
knowledge that is consistent across datasets. Note that the simu-
lation results shown in Supplementary Information SI Appendix, 
Figs. S6–S10 (third column) confirm that our modeling approach 
can detect high student learning-rate variation (and low student 
initial knowledge variation) when it is present.

To gain a statistical sense for relative variation in learning-rate 
estimates, we calculated the SD and interquartile range of learning 
rate for students (δi) and KCs (γk) for each dataset. The median 
SD across datasets for student learning rate was 0.015 (M = 0.022; 
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Fig. 2. Example learning curves from dataset 394. (A) Learning curve and model predictions average over all students and KCs. (B) Model-based learning curves 
for three randomly selected students showing nonlinear percentage point slopes at two different opportunities. (C) Same curves in log odds scale with intercept 
values (yellow) and linear slopes (blue). (D) Student i predicted success (pi) at opportunity T as a function of intercept and slope.
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SD = 0.019) and the interquartile range was 0.018 (M = 0.028, 
SD = 0.024), whereas the median SD across datasets for KC learn-
ing rate was orders of magnitude larger at 0.102 (M = 0.175; SD 
= 0.177) and the interquartile range was seven times larger at 
0.132 (M = 0.175, SD = 0.147). To help establish this low varia-
bility in student learning rate is robust and not, for example, only 
present when KC learning rate captures its variability, we investi-
gated the impact of eliminating the KC learning-rate parameters. 
We found that the individual learning-rate estimates remain quite 
similar producing little change in their variability with an inter-
quartile range of 0.021 instead of the 0.018 log odds for the full 
model.

Returning to Table 2, we provide a concrete sense of the small 
variability of student learning rate relative to variability in students’ 
initial knowledge. For columns 3 and 4, we divided students into 

groups based on percentiles of student learning-rate estimates within 
each dataset (whereas columns 1 and 2 are divided based on percen-
tiles of student initial knowledge estimates). In percentage terms, the 
interquartile range in variation for student learning rate (see column 
3) is only about 1% per opportunity (2.56 to 1.70%), whereas the 
variation in initial knowledge is about 20% (75.17 to 55.21%). We 
calculated for each percentile of student learning rate how many 
opportunities a student needed to reach mastery by subtracting the 
overall initial knowledge (θ) for each dataset from the mastery criteria 
(80% = 1.4 log odds) and dividing it by the median student learning-
rate parameter (δi) for that group of students (i.e., for each percentile 
of learning rate). Column 4 indicates that a typical student in the 
bottom half of learning rate (a slower learner) requires about 8 
(Median = 7.89) opportunities to reach mastery, whereas a typical 
student in the top half of learning rate (a faster learner) requires about 

Fig. 3. Learning curves relating opportunities to practice to performance accuracy in percent correct displayed on a log odds scale. The top graphs show student 
learning curves indicating little variation in student learning rate (i.e., lines are mostly parallel) in contrast to large variation in initial performance. The middle 
graphs show knowledge component (KC) learning curves indicating that learning-rate variation is possible and measurable as these lines are not parallel. The 
bottom graphs demonstrate that the model can accurately identify high student learning-rate variation and low student initial performance variation when they 
are known to be present as determined by simulation.

Table 2. Median (SDs) across datasets for initial accuracy and opportunities to reach mastery for low (25) and high 
(75) percentiles of initial knowledge (assuming overall learning rate, δ) and learning rate (assuming overall initial 
knowledge, θ) for iAFM models

Percentile

Initial knowledge Learning rate

Initial % correct
Opp to reach  
80% mastery

Improvement  
% correct*

Opp to reach  
80% mastery

25 55.21 (15.84) 13.13 (19.52) 1.70 (3.80) 7.89 (22.41)

50 66.05 (12.91) 6.54 (14.10) 2.25 (4.02) 7.27 (14.18)

75 75.17 (10.45) 3.66 (8.22) 2.56 (4.12) 6.94 (10.91)
*Difference between initial % correct and first opportunity: Improvements are linear in log odds but get smaller in percent increase as performance approaches 100% correct.
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7 (Median = 6.94) opportunities. In other words, a typical slower 
learner needs only one extra opportunity to keep pace with a typical 
faster learner. In contrast, we observed much larger differences in 
initial performance, with the bottom half of initial performance 
being about 10 opportunities behind the top half (13.13 to 3.66). 
The one opportunity difference to keep pace (i.e., span the inter-
quartile range) in learning rate is an order of magnitude smaller than 
the 10-opportunity difference to catch up (i.e., span the interquartile 
range) in initial knowledge.

Perhaps there are particular circumstances in which higher 
student learning-rate variation is revealed. For example, perhaps 
high initial performers cannot demonstrate their learning poten-
tial on easier KCs, and higher learning rates would be revealed 
when we measure their rate on only the more difficult KCs. 
Conversely, low initial performers may show higher rates on 
easier KCs that are more within their reach. In fact, when we 
performed such an analysis, we did not see such a pattern. The 
estimated student learning rates remained quite similar whether 

Fig. 4. Across three domains, and various grade levels, little variation is observed in student learning rate, but large differences are observed in student initial 
knowledge. These learning curves relate opportunities to practice to performance accuracy in percent correct displayed on a log odds scale.
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measured using only hard KCs, only easy KCs, or all KCs. 
SI Appendix provides more detail.

To further explore the possibility of high student learning-rate 
variation in particular circumstances, we analyzed such variation 
disaggregated by domain (six language, 16 math, and five science) 
and by student subpopulation based on grade level (eight elemen-
tary, eight middle/high, 11 college). We use the interquartile range 
of the student learning-rate hyperparameter estimates within each 
dataset and compute medians for the domain and grade level 
subgroups. Interestingly, there appears to be greater student 
learning-rate variation in the six language domain datasets (median 
interquartile range of 0.045 log odds) than in the 16 math and 
five science domain datasets (median interquartile range of 0.017 
log odds and 0.008 log odds, respectively). Student learning-rate 
variation due to grade levels is more consistent with median inter-
quartile ranges of 0.015 log odds for upper elementary, 0.018 log 
odds for middle/high school, and 0.018 log odds for college.

Discussion

We set out to use amassed fine-grained, longitudinal data to better 
understand the progress of academic learning. While hoping to 
create a method to identify high-ability learners and understand 
their characteristics, we instead found strikingly similar rates of 
learning across students in the context of favorable conditions of 
interactive educational technologies. Along the way, we also 
demonstrated three other regularities. First, across a variety of 
courses, we found that initial practice performance is quite mod-
est, about 65% correct (i.e., a failing grade), despite the general 
availability of up-front verbal instruction, such as lectures and 
readings. Second, we found that reaching a reasonable level of 
mastery (80% correct) requires substantial repeated practice, typ-
ically about seven practice opportunities. These results are con-
sistent with learning theories suggesting induction from examples 
and doing is prominent in human learning (12, 41). Third, stu-
dents’ initial performance is highly variable despite students enter-
ing the courses in which the data were collected having met 
prerequisite requirements (for college courses) or age-level require-
ments (for K-12 courses) and having received verbal 
instruction.

Might the near constant student learning rate we observe be a 
consequence of limitations of our data or the measurement model? 
The first two results, that practice is needed and opportunity-based 
practice produces mastery, suggest our data have sufficient perfor-
mance change to assess learning rate. The high variability in stu-
dent initial performance indicates that our mixed effects growth 
model (iAFM) can differentiate individual student differences if 
present. The high variability in learning rate by knowledge com-
ponent indicates that iAFM can differentiate learning-rate differ-
ences if present. Thus, limitations in the data or measurement 
model do not appear to be good explanations for our near constant 
student learning-rate observation.

Some readers may object that near constant student learning 
rate unrealistically implies that everyone can master advanced level 
calculus or interpret abstract data. Indeed, not everyone has favora-
ble learning conditions nor will everyone choose to engage in the 
substantial number of practice opportunities required. However, 
our results suggest that if a learner has access to favorable learning 
conditions and engages in the many needed opportunities, they 
will master advanced level calculus. Other readers may object with 
intuitions of learning without substantial opportunities such as 
“I learned English without any practice” or “I learned calculus 
without attending lecture.” These claims may overestimate achieve-
ment and underestimate implicit learning-by-doing (i.e., speaking 

English or solving calculus problems) and informal learning out-
side of school (e.g., a discussion of calculus with a friend).

While our investigation of 27 datasets covers a wide variety of 
academic settings, it is possible that our results do not generalize 
to all academic situations that provide favorable learning condi-
tions. Research supports the favorability of repeated practice with 
quality feedback, as these educational technologies provide; how-
ever, there are forms of feedback such as peer interactions or class-
room dialogue that are not well represented in our datasets.

Isolating Learning-Rate Measurement. Intuitions that different 
students learn at different rates may derive from contexts that 
do not provide the same level of controlled investigation under 
favorable learning conditions that the interactive learning 
technologies helped achieve. The striking regularity in learning 
rate revealed here is not apparent if we do not control or account 
for other factors that drive student performance. We must isolate 
performance changes due to particular opportunities for learning 
that are equivalent in nature and in number.

One problematic conceptualization is to measure learning rate 
in terms of calendar time, such as 10 years to become an expert 
(6). While convenient, this conceptualization ignores that some 
individuals will have many more learning opportunities than oth-
ers in the same period of time. Using learning data captured 
through interactive learning technologies, we are able to get a more 
accurate accounting of learning opportunities than has been pre-
viously possible. And, indeed, we find these learning opportunities 
are much more predictive of learning outcomes than calendar time 
(a time-based model, time-AFM, systematically provides poor 
predictive fit).

A second problematic conceptualization of learning rate com-
pares individuals getting different kinds of instructional support. 
To be sure, there is plenty of evidence that any of a wide variety 
of instructional interventions can greatly enhance student learning 
(e.g., refs. 25 and 42). However, such differences are a consequence 
of better instructional design not differences in students. 
Interactive learning technologies provide an effective way to con-
trol the nature of the learning opportunities that students experi-
ence. As driven by the materials and algorithms inherent in these 
technologies, all students are receiving the same essential instruc-
tional interactions.

A third problematic conceptualization is to merely compare 
individual performance overall without accounting for stable dif-
ferences in performance due particularly to differences in prior 
experience. Our statistical modeling approach accounts for stable 
differences in performance by including an overall student per-
formance latent variable as a per student baseline. We then meas-
ure learning rate as per-opportunity performance improvements 
above this baseline.

A fourth problematic conceptualization is to measure learning at 
the level of a broad topic or domain—as though learning opportu-
nities exercise a general faculty (e.g., “math” or “scientific reasoning”). 
Instead, we model and measure learning in terms of finer grained 
components of knowledge. This knowledge component (KC) mod-
eling has been demonstrated to more accurately predict human 
learning data than a general faculty approach (4). Thus, critical to 
our approach was to identify datasets with KC models of reasonable 
quality whereby researchers have used empirical methods to evaluate 
and refine these KC models. In fact, when we fit the statistical model 
(iAFM) to the same datasets using less accurate KC models, the 
estimates of overall learning rate go down and the estimates of stu-
dent learning-rate variation are even smaller (SI Appendix). This 
analysis indicates the importance of KC model refinement (4, 35) 
in making student rate variation detectable. In fact, when we use a D
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poor KC model, particularly the single KC model illustrated as Q0 
in Table 1, the model with learning rate (iAFM) never outperforms 
the model without it (AFM).

Implications for Precise, Computational Theories of Learning. 
Taken together our findings pose a useful challenge for precise 
theories of human learning. Despite great progress in recent 
years, neither Cognitive Neuroscience nor Artificial Intelligence 
has provided a full, precise account of how humans learn 
complex academic concepts and skills. Learning curves have 
been used as an inspiration for learning theory development, 
but past work focused on modeling decrease in response times 
as a consequence of practice (43, 44). Such theory might be 
sufficient if performance accuracy was easy to achieve and most 
learning occurred as a speed-up in accurate performance. Our 
results suggest otherwise. Given our findings that a typical 
student starts practice-based learning at about 65% accuracy 
and that substantial practice, typically about seven opportunities 
per knowledge component, are needed to achieve 80% accuracy, 
it is clear that learning theory must also account for changes in 
performance accuracy.

Our results suggest three specific theoretical challenges. A pre-
cise learning theory should explain and account for 1) continued 
changes in performance accuracy due to deliberate practice oppor-
tunities after initial up-front verbal instruction, 2) substantial 
student variation in initial performance, and 3) much smaller 
variation in student learning rate across practice opportunities. 
We briefly discuss each.
Explaining  deliberate practice benefits. That up-front lectures 
and readings seem to produce limited performance accuracy 
is surprising given the great efforts educators continue to put 
into producing lectures and texts and given that most learners 
advocate explicit learning as the best way to learn (45). Books and 
then recorded lectures have facilitated broader dissemination of 
knowledge historically, but much emphasis on lecture recording 
remains today even in online course contexts where interactive 
practice is feasible and effective (cf., 20). A theoretical postulate 
consistent with limited accuracy after up-front verbal instruction 
is that human learning is not simply about the explicit processing, 
encoding, and retrieval of verbal instruction but as much or more 
about implicit or nonverbal learning-by-doing in varied practice 
tasks where interactive feedback is available (12).

We observed that giving learners well-designed practice opportu-
nities with feedback produces performance accuracy increases but 
learners typically require many such opportunities. Such interactive 
practice-based theory has support from empirical studies of expertise 
development (5), experimental studies of the testing effect (17), and 
active learning (46). Theoretical models of human skill acquisition 
are generally consistent in the qualitative prediction that many learn-
ing opportunities are needed for a skill to be accurately acquired or 
a fact to be robustly recalled at a long interval (47, 48).
Explaining big differences in student initial knowledge intercepts. 
A class of general computational theories of cognitive skill 
acquisition (e.g., 47, 49, 50, 51, 52) suggest that expertise develops 
through experience. This experience produces new skills stored in 
a procedural memory system made up of conditional knowledge 
components, typically implemented as if-then production rules. 
Such theories provide a straightforward explanation of big 
differences in student prior domain knowledge, namely, that some 
students have had more domain-relevant prior experiences than 
others. These past experiences produce domain-specific learning 
opportunities before the window of observation within our 
datasets (e.g., discussion of fractions with a parent while making 
pancakes at home before fractions are covered in school).

This prior-opportunities hypothesis has been used to explain 
large intercept differences in reaction time learning curve data 
between children (with higher initial reaction times) and adults 
(with lower initial reaction times) given repeated practice on men-
tal rotation tasks (53). The learning curves of the two groups 
match under the single assumption that adults have had about 
2,000 more prior opportunities to practice than the children. The 
Apprentice Learner (AL; ref. 54) theory has been used to support 
this prior-opportunities hypothesis in making accurate predictions 
of individual intercept differences in error-rate learning curves. As 
a fully functional computational model of learning, AL learns 
from tutoring interactions like those provided by the interactive 
educational technologies used to produce our datasets and thus 
makes these predictions with only a single parameter per student 
representing unobserved prior practice. Unlike statistical models 
(e.g., refs. 43, 55, and 56), AL does not need parameters for 
knowledge component difficulty and learning rate because such 
differences are emergent from declining performance errors pro-
duced by the learning mechanisms inherent in it (e.g., learning 
how to do things to produce the then-part of production rules 
and learning both where to get needed information and when to 
do things to produce the if-part of production rules).

The prior-opportunities hypothesis suggests a concrete, though 
challenging, empirical test: If researchers can track and count 
domain-relevant learning opportunities that students experience 
prior to course entry, they should find a) large differences across 
students in these prior opportunities and b) that these differences 
substantially account for large initial performance differences at 
the start of within-course practice that we have observed.
Toward explaining small differences in student learning rate. 
We can infer a prediction of student learning-rate variation 
from the learning mechanisms posited in prior skill acquisition 
theories (e.g., 47, 49). The compilation learning mechanism (49) 
posits that domain-specific skills are acquired from preexisting 
domain-specific declarative knowledge and from preexisting 
domain-general procedural knowledge that interprets these 
declarative memories to form new domain-specific skills. If we 
assume individual variation in the quality or quantity of this 
domain-general background knowledge, it follows from these 
skill acquisition theories that we should observe individual 
differences in learning rate. Similar arguments follow from the 
chunking mechanism (57) and inductive learning mechanisms 
in the Apprentice Learner (53).

Such background knowledge is used indirectly in the domain as 
support to answer questions (e.g., negative number concepts in equa-
tion solving) or as part of processing learning materials (e.g., reading 
skills for comprehending solution directions in equation solving). It 
can be distinguished from prior domain knowledge, which is used 
directly to answer questions or perform reasoning steps in the instruc-
tional domain (e.g., adding to both sides in algebra equation solving). 
Large differences in prior opportunities, it would seem, should not 
only produce differences in prior domain knowledge, as discussed 
above, but also differences in background knowledge. In turn, dif-
ferences in background knowledge should produce differences in 
learning rate (cf., 58, 59).

While we did find large differences in initial knowledge, we 
found quite small differences in learning rate. Why might that be? 
We suggest a disjunctive learning path hypothesis based on our 
observations of learning processes of the Apprentice Learner (AL) 
and consistent with skill acquisition mechanisms in other theories 
(47, 49). AL specifies a mechanism of academic learning whereby 
learners use background knowledge to search for and induce men-
tal derivations or explanations of examples they experience (cf., 
60, 61). To be sure, these mental explanations are modeled and D
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conceived of as mostly nonverbal, inductive brain processes (cf., 
12) not explicit verbal reasoning that the term “explanation” may 
evoke. AL produces many alternative explanations of the same 
example steps especially when simulated learners are given differ-
ent subsets of that background knowledge. Thus, AL predicts that, 
with different sampling of background knowledge, student learn-
ing produces differences in mental representation but similar per-
formance outcomes. For example, one student may have existing 
background knowledge to self-explain an algebra example involv-
ing negative number subtraction, whereas another student does 
not but compensates with a conceptual strategy using a number 
line to self-explain the same example.

Consistent with this disjunctive learning path hypothesis, a 
neuroimaging study demonstrated that students achieved equiv-
alent performance in math problem solving with quite different 
mental representations (62). Students instructed with a verbal 
representation solved problems as effectively but with higher acti-
vation in the left-prefrontal cortex than students instructed 
through a symbolic representation, who revealed higher activation 
in the bilateral parietal cortices.

The higher learning-rate variation we observed in the language 
datasets than in the math and science datasets also appears consistent 
with the disjunctive learning path hypothesis. The math and science 
domains allow for multiple learning paths in that the subject-matter 
includes generalized skills and rediscoverable principles and fewer 
verbatim facts than the language domains (cf., 12). Learning in lan-
guage domains is thus more dependent on rote memory to acquire 
arbitrary mappings (e.g., in English, oceans are referenced using “the” 
whereas lakes are not). Thus, variations in rote memory processing 
may produce greater learning-rate variation in those domains than 
in math and science domains where rote memory limitations can be 
supplemented or compensated with general skill induction or sense 
making processes.

More generally, our educational system may be reasonably uni-
form in providing students with sufficient background knowledge 
for learning such that, for example, students enter an algebra 
course with enough background knowledge of integers, rationals, 
and arithmetic to learn from good examples, practice, and instruc-
tional feedback. Moreover, given favorable learning conditions, 
student learning may be substantially robust to small gaps in back-
ground knowledge. With good instruction, such as the quality 
deliberate practice that interactive learning technology systems 
provide, students can compensate during learning for some gaps. 
We suggest further theory development and learning curve mod-
eling to test these hypotheses.

Practical Implications. The learning-rate question is practically 
important because it bears on fundamental questions regarding 
education and equity. Can anyone learn to be good at anything 
they want? Or is talent, like having a “knack for math” or a “gift 
for language,” required? Our evidence suggests that given favorable 
learning conditions for deliberate practice and given the learner 
invests effort in sufficient learning opportunities, indeed, anyone can 
learn anything they want. If true, this implication is good news for 
educational equity—as long as our educational systems can provide 
the needed favorable conditions and can motivate students to engage 
in them. The variety of well-designed interactive online practice 
technologies used to produce our datasets point to a scalable strategy 
to provide these favorable conditions. Importantly, these technologies 
were well engineered to provide the key features of deliberate practice 
including well-tailored task design, sufficient repetition in varied 
contexts, feedback on learners’ responses, and embedded instruction 
when learners need it. At the same time, students do not learn from 
these technologies if they do not use them. Recent research providing 

human tutoring to increase student motivation to engage in difficult 
deliberate practice opportunities suggests promise in reducing 
achievement gaps by reducing opportunity gaps (63, 64).

Materials and Methods

Datasets. This project was possible because of LearnLab’s DataShop, the world’s 
largest repository of student learning data (65). We used 27 datasets (Table 2 
see 66) from DatatShop that include an assortment of domains (e.g., geometry, 
fractions, physics, statistics, English articles, Chinese vocabulary), of educational 
levels (e.g., grades 5 to 12, college, adult learners), and of settings (e.g., in class vs. 
out of class as homework). In general, students worked at their own pace through 
course materials and received as-needed assistance in the form of hints and 
feedback. In many cases, a predetermined period of time was set for completing 
the work (e.g., one or more class periods).

Within these educational technologies, students perform tasks by answering 
questions or, in some cases, entering solutions to problems in a step-by-step fash-
ion. All entries are either selected responses or short constructed responses that are 
automatically scored, sometimes with the help of Artificial Intelligence algorithms. 
Whereas some student responses are to four-choice multiple choice questions, most 
requested student responses are open. Such responses include text fields where 
students enter numbers (e.g., “72.3”), expressions (e.g., “(972+b)/5”), or a word (e.g., 
the pinyin spelling of a Chinese symbol). They also include graphical user interface 
actions such as clicking a place on a number line (ds445) or drawing a force vector 
(ds104). Some multiple choice questions involve more than four options such as a 
list of some 12 possible explanations for an English article choice. Example tasks 
can be found in SI Appendix (SI Appendix, Figs. S1–S5). Student responses to these 
tasks are automatically tagged as correct when students answer correctly on their 
first attempt without asking for a hint. Otherwise, the task response is tagged as an 
error. To estimate performance at a given task opportunity, only the student’s first 
attempt is considered, though subsequent student attempts and system feedback 
are critical contributors to learning. We define learning as a positive change in per-
formance and operationalize learning as a reduction in error rate (or increase in 
correctness rate) over successive opportunities to perform a task associated with a 
specific knowledge component.

Dataset Selection Criteria. Among hundreds of datasets available in DataShop, 
we identified 27 datasets to include in our analysis (SI Appendix, Tables S1 and 
S2). To achieve accurate parameter estimation from a dataset, it is critical to have a 
quality knowledge component (KC) model (cf., 1, 4). Thus, we looked for datasets 
where a KC model meets a set of precise criteria for quality and interpretability. 
To be included, a dataset must have an associated KC model that is better than 
at least two extreme alternatives (defined as lowest root mean squared error on 
the test set in threefold item-blocked cross validation), an item-based model 
where each distinct task is coded as a different KC (e.g., Q3 in Table 1), and a 
faculty model where all unit tasks are coded as a single KC (e.g., Q0 in Table 1). 
For straightforward interpretation, we only considered KC models that involve a 
single KC label per unit task (see footnote 1). For datasets that had more than 
the three KC models implied above, we selected the KC model that had the best 
overall prediction fit in item stratified cross validation (always comparing on the 
same sample of student observations).

We investigated the impact that the quality of the KC model had on the results 
we present. Better KC models tend to both increase overall learning rate (cf., 12) 
and slightly increase student learning-rate variability. Nevertheless, our main 
results, particularly low student learning-rate variability, remain regardless of 
the KC model chosen (see SI Appendix for details).

We eliminated two datasets where the initial overall success rate was greater 
than 80% as these datasets leave less room to observe learning. Among the 
selected 27 datasets, we noticed that some specific KCs were too limited in num-
ber of associated data points. Thus, in each dataset, a KC was included only if there 
were data from at least 10 students with at least two learning opportunities. For 
13 datasets, all KCs were included and in the other 14 datasets, an average of 
2.7 of 952 KCs were excluded.

Data, Materials, and Software Availability. All data are available from links 
in SI Appendix, Table S3 and all analysis scripts are available here: https://pslcda-
tashop.web.cmu.edu/Files?datasetId=4629 (66).D
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